
Distributed Network Scheduling

Bradley J. Clement, Steven R. Schaffer

Artificial Intelligence Group
Jet Propulsion Laboratory

4800 Oak Grove Drive, M/S 126-347
Pasadena, CA 91109

Bradley.J.Clement@jpl.nasa.gov, Steven.R.Schaffer@jpl.nasa.gov

Abstract. Distributed Network Scheduling is the
scheduling of future communications of a network by nodes
in the network. This report details software for doing this
onboard spacecraft in a remote network. While prior work
on distributed scheduling has been applied to remote
spacecraft networks, the software reported here focuses on
modeling communication activities in greater detail and
including quality of service constraints. Our main results
are based on a Mars network of spacecraft and include
identifying a maximum opportunity of improving traverse
exploration rate by a factor of three; a simulation showing
reduction in one-way delivery times from a rover to Earth
from as much as 5 to 1.5 hours; simulated response to
unexpected events averaging under an hour onboard; and
ground schedule generation ranging from seconds to 50
minutes for 15 to 100 communication goals.

1 Introduction
This paper focuses on issues of autonomously adapting
communications for a remote network of spacecraft. If the
spacecraft are designed to always guarantee available
resources (e.g. transceivers, memory, power) to
autonomously redirect communications on the fly, then in
order to make such reactive communications autonomous,
all that is needed onboard are control sequences for
switching transceivers and slewing and routing algorithms
for intermittent communication opportunities (Akyildiz et
al. 2003). Such spacecraft designs can be expensive since
providing resources for all possible scenarios can incur
significant additional vehicle mass. We investigate
missions where communications resources are limited,
requiring autonomous planning and execution. Unlike
typical networks, spacecraft networks are also suited to
automated planning and scheduling because many
communications can be planned in advance. Because the
network of spacecraft can represent multiple missions,
missions will be reluctant to give up control of the
spacecraft. Because communication among spacecraft is
often intermittent (due to orbital and resource constraints),
a spacecraft that can make scheduling decisions
autonomously will be more responsive to unexpected
events. Thus, a centralized planning system will not be
sufficient to enable reactive communications, so we
propose a distributed network scheduling system.

 The software automatically negotiates the rescheduling
of these communications with other spacecraft while
respecting constraints with communication resources (such
as memory and transceiver availability). Each node
(spacecraft) tracks only its own communication activities
and makes its own scheduling decisions but can propose
communications with others. It provides an interface for a
user or automated process to request communication
service and to receive a reservation with updates on the
expected or resulting quality of service (QoS). The
communication needed to coordinate planning (“meta-
communications”) are not scheduled by the system because
the overhead is insignificant compared to science image
transfers. However, simulations of the system limit this
communication to available view periods.
 Figure 1 shows the architecture of a single node in the
distributed network scheduling system. The middleware
component provides an application-level interface to the
communications protocol stack. It passes requests from
users (e.g. mission operations staff, scientists), autonomous
control systems, or other spacecraft to a distributed
planning interface that manages the negotiation process,
and instantiates goals in the planner. The planner
schedules communications to achieve the goal with help
from adaptive communication algorithms. It does this by
providing contextual information about the future network
state and the communication goal in question. The
adaptive algorithms then simulate and report how data will
be transferred and with what quality of service (QoS). The
distributed planning interface then returns the schedule and
QoS information to the requestor as a reservation.
Distributed planning also manages the negotiation of
requests as the needs of the spacecraft change (as
determined by the planner). Status of reservations are
updated and reported as re-planning, negotiations, and
execution of communication activities unfold.
 In the remainder of this document, we describe the
interfaces of the architectural components and their
implemented capabilities. We then show that the
exploration rate of a rover (similar to Mars Science
Laboratory – MSL) on a long traverse can be improved by
no more than a factor of three with adaptive
communications. We also simulate communications
between a rover and Earth with orbiter relays to

demonstrate reduced latency by as much as 3.5 hours. We
then report experiments on a simulated Mars network of
five spacecraft/rovers to gauge the systems ability to
reactively re-schedule communication activities in a
distributed fashion.

2 Communication Requests, Reservations,
and Status
An application or user requests future communication from
the network by providing values for the following
variables:

• int id – index for tracking
• string source – who is sending data
• string destination – who is receiving the data
• int size – estimate of size of data to be sent in Kbits
• real bandwidth_min – minimum required

bandwidth Kbits/s
• real bandwidth_max – maximum usable

bandwidth in Kbits/s
• real priority – importance of fulfilling request

(larger numbers indicate greater importance)
• int start_time_min – minimum requested start

time of communication
• int start_time_max – maximum requested start

time of communication
• int duration_min – minimum needed time

duration of initial data transmission
• int duration_max – maximum requested time

duration of initial data transmission
• int delivery_time_min – minimum required

delivery time

• int delivery_time_max – maximum requested
delivery time

• bool progressive – whether data is recreated as it
is received (= true) or transmission is only valuable
when completed, i.e. all or nothing (= false)

• real loss_overall – maximum percentage loss
tolerance of overall data

• real loss_per_block – maximum percentage loss
tolerance for any block

• real loss_block_size – size of block for which
the loss tolerance is specified

• string protocol – what protocol(s) should be used
for transmission and with what options (e.g. CFDP -
noack); this string has no generic structure and is to be
generated and interpreted by adaptive communications
software through an interface.

 Upon receiving a request, the network will schedule
(“reserve”) the communication and reply with the expected
quality of service for the same variables above and a real-
valued percent_delivered variable, indicating the
percentage of the data delivered or expected to be
delivered. Status during and upon completion of execution
is also reported through the same construct.

3 Local Scheduling
We use the ASPEN planning system (Chien et al., 2000) to
schedule communications according to constraints on
memory, transceiver availability, and available windows of
communication between scheduling nodes (spacecraft).
The main activities scheduled are send, receive, and
relay, for transmitting, receiving, and relaying data files.
Segmentation and reassembly of files is supported for
when files are too large to be sent in available

Planner/Scheduler

distributed
planning interface

Spacecraft

adaptive comm.
interface

user

reservations,
status/QoS

Middleware adaptive comm.
algorithms

context
routing,
protocol,
QoS decisions

Spacecraftrequests

requests

reservations,
status/QoS

Planner/Scheduler

distributed
planning interface

Spacecraft

adaptive comm.
interface

user

reservations,
status/QoS

Middleware adaptive comm.
algorithms

context
routing,
protocol,
QoS decisions

Spacecraftrequests

requests

reservations,
status/QoS

Figure 1. Distributed network scheduler architecture

communication windows. In addition, scheduling supports
cut-through switching, receiving and relaying a file
simultaneously when multiple transceivers are available.
The timing and duration of activities takes into account
constraints on communication delay and bandwidth.
While quality of service estimates/status is propagated
through the network, the scheduler currently does not
handle failures, such as over-tolerance data loss.

3.1 Scheduler Activities
The main activities we use to model data transfer are
send, transmit, receive, and relay. The send
activity recursively decomposes into a series of
transmit activities for segmentation of the file transfer.
It also includes a free_memory activity following each
transmit where the amount of data sent is replenished
to a memory resource at a time indicated by a
free_type parameter, which has one of the following
values: “never”, “on transmission”, “on
delivery”, “on_custody_xfer.” If “on
transmission,” the memory is freed at the end of the
transmit activity. If “on delivery,” memory is
freed at the end of the receive activity of the receiving
node. The “on_custody_xfer” value is intended to
support custody transfer protocols that are not yet
implemented.
 When one node is executing the send activity, the
receiving node executes a relay activity. The relay
activity decomposes into a receive activity. If the
receiving node is not the intended destination of the file,
then the relay activity also decomposes into a send
activity, routing the data elsewhere.
 The transmit and receive activities are
constrained to be scheduled only during available
communication windows, which are modeled as states
having “in_view” and “out_of_view” values over
time intervals provided by the system designer. These
activities also must reserve a transceiver resource from a
set provided by the system designer. The adaptive
communication algorithms (shown in Figure 1) provides
the assignment algorithm. The receive activity also
consumes memory of the amount of the data received.
 Delay between the start of the send and receive
activities between pairs of nodes is specified through an
adaptive communications function. Cut-through switching
is implemented in the relay activity. This is where a file
is received and transmitted simultaneously. The start of
the send sub-activity (of relay) is computed according
to the start of the receive sub-activity and the data rates
of both receive and send such that data blocks are not
sent before they received. These activities and resources
are modeled in the ASPEN (Activity Scheduling and
Planning Environment) modeling language (Sherwood et
al. 2000).
 The interface to adaptive communication algorithms
(shown in Figure 1) is simply the provision of many of the
dependency functions in the above activities. Again, these

functions could be provided in a middleware
communication layer.

3.2 Resources and States
• memory – Decisions about when to store and delete data

are based on memory availability.
• data – It may be important to keep track of whether

particular data files are stored or deleted in case one
needs retransmission due to an unexpected failure.

• antenna(s) – Spacecraft can only communicate with one
(or maybe two) others at a time.

• communication windows – Spacecraft can only
communicate when in view of each other.

 Obvious resources that are not considered are power and
battery energy. We do not consider the network
scheduler’s role to handle these other resources and
assume that their safe use is guaranteed by ground
operations or an onboard planning and execution system.

3.3 Metrics
The network scheduler currently reschedules to resolve
conflicts, but can be extended to optimize the schedule
according to summed priority of scheduled activities over a
horizon by using ASPEN’s optimization framework. The
network scheduler itself will be evaluated in simulation
according to time to resolve new or changed requests.
This will be compared to current techniques later in the
Evaluation section.

3.4 Adaptive Communication API
The following functions (listed as dependencies in the
model of the activities) should be implemented to decide
how to adapt communication for a given context:

string choose_antenna(my_name, protocol,
requested_bandwidth)

determine which antenna should be used according to
the protocol and requested bandwidth

string route_to(sender, destination,
protocol)

determine to whom data should be routed next
real request_bandwidth(requested_bandwidth,
sender, antenna, receiver, bandwidth)

determine the appropriate bandwidth based on the
protocol and the requested bandwidth

bool is_interruptible(protocol)
determine whether are not the transmission can be
interrupted and continued later

bool is_progressive(protocol)
determine whether or not this protocol allows the file
to be created as it is received (otherwise it is sent all-
or-nothing)

string get_free_type(protocol)
determine when the data can be cleared from memory
(i.e. when custody is transferred); valid values are
“never”, “on_transmission”, “on_delivery”,
and “on_custody_xfer”

real reply_percent_delivered(protocol,
duration, bandwidth, size,percent_delivered)

determine the percentage of the data expected to be
delivered

real reply_loss_overall(protocol,
loss_tolerance_overall)

determine the percentage loss of the overall image
according to the protocol and the requested tolerance

real reply_loss_per_block(protocol,
loss_tolerance_per_block, loss_block_size)

determine the maximum percentage loss of the image
per block according to the protocol and the requested
tolerance

real calc_send_bandwidth(my_name,
send_start_time, destination, receiver,
antenna, requested_delivery_time,
delivery_time_max, send_protocol)

determine the expected bandwidth to be used by the
sender’s protocol base on the request

string get_send_protocol(my_name,
send_start_time, destination, receiver,
antenna, requested_delivery_time,
delivery_time_max, send_bandwidth)

determine the protocol the sender should use for this
request

4 Distributed Scheduling
Scheduling is distributed by propagating information
through the network to nodes that are affected and by
giving each node some level of decision-making authority
with respect to local scheduling. We use Shared Activity
Coordination (SHAC) (Clement and Barrett, 2003) to
implement this.
 SHAC is an interface between planning/scheduling
systems, a general algorithm for coordinating distributed
planning, and a framework for designing and
implementing more specific distributed planning
algorithms. Within SHAC, a shared activity is an activity
that some set of planners must collectively schedule. It can
be a coordinated measurement, a team plan in which
planners have different roles, a use of shared resources, or
simply an information sharing mechanism. Planners are
coordinated when they reach consensus on the shared
activity. Consensus is achieved when they agree on values
for members of the shared activity structure:

• Parameters: Shared variables (e.g. start time, duration,

bandwidth)
• Constraints: Each planner’s constraints on parameter

values
• Roles: Subset of planning agents assigned to roles
• Permissions: Variables that determine how each planner

is allowed to add, remove, and modify a shared activity

 Roles determine how an agent participates in the shared
activity. For example, a transmit role in a shared
communication activity has different resource constraints
than the receive role. Roles specify which agents share the
activity and can determine permissions and the protocol

used to govern the agent’s handling of the shared activity.
Constraints can specify restrictions the agents have on the
values of parameters. By propagating local constraints,
agents can make scheduling choices that avoid conflicts
with others without knowing the details of their plans. For
example, an agent can send a constraint on the time
windows of an activity as local scheduling constraints.
 Protocols (distributed planning algorithms) specify how
constraints, roles, and permissions of the shared activities
change over time and are used to resolve conflicts among
the planners. For example, a round-robin protocol rotates
permission assignments among the planners, giving them
each turns to replan the activity. A delegation protocol
assigns and re-assigns agents to roles. Protocols are
designed by sub-classing built-in and user-defined protocol
classes.
 By constructing protocols and modeling the attributes of
shared activities, a system designer specifies the autonomy
of each agent with respect to decision-making and
computation. A completely centralized approach gives one
agent a role in each activity with full permissions.
Decentralization is introduced when agents propagate
constraints, when agents fulfill different roles, or when
more than one agent has planning/scheduling permissions.
The SHAC coordination algorithm (stated simply) is a
continual loop of refining/replanning, applying protocols
to further modify shared activities, sending shared activity
updates to the sharing planners, and integrating updates
from others. The planner interface enables different
existing planning tools to interact in this framework. More
information about the algorithm and protocols can be
found in (Clement and Barrett, 2003, Clement et al., 2004).
 SHAC is customized for the particular application
domain. For a Mars network, we specified shared
activities between pairs of spacecraft mapping transmit
activities of one spacecraft to relay activities in another.
Shared parameters include those of the request/reservation.
The roles specify which local activity (transmit or
relay) corresponds to each agent (spacecraft) potentially
participating. The transmitter is assigned a delegation
protocol for choosing a spacecraft to relay the data. Other
agents are assigned a subordination role. The
subordination protocol will remove the agent from the
shared activity’s roles with a specified probability if the
agent is yet unable to successfully schedule the activity
locally. This triggers the delegator to assign another
subordinate.

5 Evaluation
The distributed network scheduler enables reactive
communications within the context of scheduled
operations by autonomously negotiating over
communication changes. In addition, the scheduling
system can generate schedules using the same negotiation
mechanisms. This means that separate missions (such as
the many studying Mars) can use this software to
collaboratively schedule communications on the ground.

A prototype network scheduling system was implemented
for communication models of MER-A, MER-B, MGS
(Mars Global Surveyor), Odyssey, and Mars Express. We
give experimental results for this application domain after
giving more theoretical results illustrating the benefits of
adaptive communication for rover exploration that this
system enables.

5.1 Rover Exploration Performance
Here we examine the science return performance of a
semi-autonomous rover investigating rocks during a long
traverse between sites. We simulate a traverse based on
early MSL scenarios where a rover has the ability to
autonomously detect rocks of potential scientific interest,
downlink images, and investigate based on commands
returned after scientists have studied the images. The
rover continues along its path and turns back to perform
detailed measurements if commanded. Figure 2 illustrates
how the rover must traverse the path three times in order to
return to the rock. In the worst case, a target rock is
identified just after each communication opportunity
causing the rover to traverse the entire distance three times.
By providing more communication opportunities through
adaptive rescheduling this backtracking can be reduced,
resulting in a theoretical opportunity of threefold
exploration speedup.

 We simulated traverses with communication
opportunities at fixed time intervals and placed rocks along
a straight-line path according to a Poisson distribution.
The intervals between communication opportunities and
number of total rocks were varied for each run. Figure 3
shows a plot of how the rover’s exploration speed
approaches the optimal as the number of communications
opportunities increases with respect to the number of
rocks. Adaptive communications allows the rover to take
advantage of opportunities that were previously
unscheduled. This does not mean that additional
bandwidth to Earth is required since only the needed
opportunities are taken. By giving more opportunities, the
overall performance is increased. For example, if the
communications opportunities are doubled (moving the x-
axis ratio from 1.0 to 2.0 in the figure), there is a potential
increase from 0.5 to 0.6 (y-axis) in the normalized
exploration speed of the rover, resulting in a 20% increase
in science return.

5.2 Rover Communication Performance
In some situations a rover must sit idle while waiting on a
response from Earth. For example, using the Rock
Abrasion Tool (RAT) can take as long as nine days
because of uncertainties of executing a long sequence of
grinding, drilling, sampling, and measuring and the delays
of communication in getting new sequences from ground.

images
interesting

rock
downlink
images uplink

response

backtrack to rock
for experiments

continue traverse

images
interesting

rock
downlink
images uplink

response

backtrack to rock
for experiments

continue traverse
Figure 2. Rover backtracking to study a rock during a traverse

0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0.01 0.1 1 10 100

comm opportunities / # of rocks

ef
fe

ct
iv

e
ve

lo
ci

ty
 /

ro
ve

r v
el

oc
ity

Figure 3. The effect of increasing communication opportunities on rover exploration speed

Thus, reducing the delay between the need for
communication and getting a response is of great interest
to Mars missions.
 Using information about the duration and frequency of
orbiter passes as well as cross-link intervals between
orbiters and Earth, we simulated the transfer of data from a
rover to Earth with potential routing through orbiters or a
direct-to-Earth (DTE) link. Passes of MGS and Odyssey
with rovers is 10 minutes in duration, and Mars Express is
8 minutes with rovers. Communication delays are 20
minutes with Earth and 1 second otherwise. Figure 4
shows mean delivery times (in seconds) to Earth for 1000
simulations per point of four routing cases based on
varying numbers of scheduled communications and
possible windows of opportunity. “Static” means that only
scheduled links can be used, and “dynamic” means that
any window can be adaptively scheduled on the fly.
“Direct” means that the rover can only use DTE
communications, and “routed” means that it can route
through orbiters. Dashed lines show the 95% confidence
interval, indicating variance. Outliers skew the mean and
cause the jaggedness of the plot. Here we assume that all
DTE opportunities are scheduled, so the static/direct and
dynamic/direct cases are the same.
 The difference in the static/routed and dynamic/routed is
the performance improvement for rescheduling
communications on the fly. For a ratio of one (where all

windows are scheduled), performance is the same (as
expected), a little over 5000 seconds (about an hour and a
half). For fewer scheduled windows, the performance
quickly degrades and approaches the DTE plot (at the top)
of ranging just below five hours. The difference in the
static/routed and the DTE plot shows the performance
improvement of routing through orbiters as the number of
scheduled routing opportunities decreases.

5.3 Mars Network Experiments
A rover can take advantage of sending data to an over-
passing orbiter with minimal negotiation. The orbiter can
weigh the priority of the rover’s data with the orbiter’s
current resource needs and decide whether it will agree to
relay the data. We have assumed that the orbiters always
agree to route the rover’s data in the above experiments.
However, once they have agreed to the new
communications goal, the network of spacecraft may need
to reschedule other communications. But, how long does
it take for the network to reach consensus on a new
schedule based on the addition of a goal?
 We performed experiments for the Mars network given
the same communication scheme for the previous
simulation to see how long the distributed network
scheduler could reach consensus upon the addition of a
new communications goal. The passing of time was

Figure 5. Improvement of adaptive rescheduling in delivery time from rover to Earth

simulated, and coordination messages were routed through
SHAC according to the availability communication
windows. We modeled SHAC similar to that at the end of
the Distributed Scheduling section. To simulate the
slowdown of flight processors, we need time to pass
around 500-1000 times faster than real time. Since all five
spacecraft were run on the same workstation in these
experiments, we simulated time passing 100 times faster
than system time for a slowdown factor of 500, roughly.
Measurements were made in both cpu seconds and actual
seconds while simulating time. Replanning cycles (1 for
each SHAC cycle) were restricted to 20 ASPEN iterations,
and when there were no remaining conflicts, SHAC slept
for 0.1 seconds (10 simulated seconds) between cycles.
Results for 5 problems are reported for each number of
goals ranging between 3 and 20. These numbers are of
communication goals for each spacecraft over a 3-day
horizon. Goals were randomly generated with data size
ranging between 2 and 100 Kbits, with delivery deadlines
ranging between 40,000 and 100,000 seconds (~11 to 28
hours), and with random destinations to either Earth or a
rover (but rovers always send to Earth). Once a schedule
was generated, another goal was added for a random
spacecraft at a random time in order to measure the effort
in reaching consensus for an unexpected event.
 Figures 6 and 7 show the results of rescheduling for one
goal added to the system. Each point in the plots is a
mean, min, or max value for the five spacecraft. Figure 6
shows that cpu time is limited to less than 200 seconds for
a spacecraft. On a flight processor, this translates to

100,000 to 200,000 seconds, or 28 to 56 hours. The mean
maximum time is between 4 to 30 seconds, or 1 to 14
hours. The system time in Figure 7 shows that on average,
the system reaches consensus in less than an hour
(according to the max time trend line), but it can take a
little more than 200 actual seconds in some cases. We
must multiply this by the simulation speedup factor of 100;
thus, the approximate maximum time onboard for this
problem set would be roughly 56 hours. This means that
without careful coordination, activities scheduled within
56 hours of the unexpected event could be executed
inconsistently with respect to other spacecraft. To resolve
this problem, the spacecraft should switch to a simpler
protocol with real-time consensus guarantees for activities
soon to be executed. Although not employed in this
application, an algorithm for determining when this switch
should occur (based on the time of the activity,
communication windows, and the routing required by the
simpler protocol) is described in (Clement and Barrett,
2003). Communication overhead for reaching consensus
ranged to at most 25 messages and 18 kilobytes. Many of
the goals could be resolved locally, requiring no
communication. Although not shown here, initial schedule
generation (applicable to collaborative ground planning)
averaged 25 cpu seconds, 102 actual seconds, 91
messages, and 55 kilobytes per spacecraft. The actual time
(to reach consensus) ranges from seconds to 50 minutes.
Plots of these results can be found in a lengthier version of
this paper (Clement and Schaffer, 2004).

0.01

0.1

1

10

100

1000

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
number of goals per spacecraft

cp
u

se
co

nd
s

mean cpu time
max cpu time
min cpu time
Linear (min cpu time)
Linear (mean cpu time)
Linear (max cpu time)

Figure 6. CPU time for scheduling a single goal

6 Conclusion
This report described software for onboard distributed
scheduling of communications among a network of
spacecraft in a fashion. The distributed network scheduler
enables reactive communications within the context of
scheduled operations by autonomously negotiating over
communication changes. In addition, the scheduling
system can generate schedules using the same negotiation
mechanisms to enable missions (such as the many for
Mars) to collaboratively schedule communications on the
ground. Evaluations were based on models of MER-A,
MER-B, MGS, Odyssey, and Mars Express. Our main
results include:
• simulation showing a maximum opportunity of

improving traverse exploration rate by a factor of three;
• simulation showing reduction in one-way delivery times

from a rover to Earth from as much as 5 to 1.5 hours;
• simulated onboard response to unexpected events

averages under an hour; and
• ground schedule generation ranging from seconds to 50

minutes for 15 to 100 goals.
 Future work includes extending the software to schedule
during execution using varied protocols to give real-time
consensus guarantees and integrating the software with a
realistic communications simulator.

References
I. Akyildiz, O. Akan , C Chen, J. Fang, W. Su.
InterPlaNetary Internet: state-of-the-art and research
challenges. Computer Networks, 43, 75–112, 2003.
S. Chien, G. Rabideau, R. Knight, R. Sherwood, B.
Engelhardt, D. Mutz, T. Estlin, B. Smith, F. Fisher, T.
Barrett, G. Stebbins, D. Tran , ASPEN - Automating Space
Mission Operations using Automated Planning and
Scheduling, Proc. SpaceOps 2000, Toulouse, France, June
2000.
B. Clement, A. Barrett. Continual Coordination through
Shared Activities. 2nd International Conference on
Autonomous and Multi-Agent Systems (AAMAS 2003).
Melbourne, Australia. July 2003.
B. Clement, A. Barrett, S. Schaffer. Argumentation for
Coordinating Shared Activities. Proc. IWPSS, June 2004.
B. Clement, S. Schaffer. Distributed Network Scheduling.
The Interplanetary Progress Report, 42(156), February
2004.
R. Sherwood, B. Engelhardt, G. Rabideau, S. Chien, R.
Knight. ASPEN User’s Guide. JPL Technical Document
D-15482,
http://www-aig.jpl.nasa.gov/public/planning/aspen/,
February 2000.

0

50

100

150

200

250

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
number of goals per spacecraft

se
co

nd
s

mean system time
min system time
max system time
Linear (min system time)
Linear (mean system time)
Linear (max system time)

Figure 7. Actual time to schedule a single goal

